Research Article

Genomic identification, phylogeny, and expression analysis of MLO genes involved in susceptibility to powdery mildew in Fragaria vesca

Published: August 05, 2016
Genet. Mol. Res. 15(3): gmr8400 DOI: 10.4238/gmr.15038400

Abstract

The MLO (powdery mildew locus O) gene family is important in resistance to powdery mildew (PM). In this study, all of the members of the MLO family were identified and analyzed in the strawberry (Fragaria vesca) genome. The strawberry contains at least 20 members of the MLO family, and the protein sequence contained between 171 and 1485 amino acids, with 0-34 introns. Chromosomal localization showed that the MLOs were unevenly distributed on each of the chromosomes, except for chromosome 4. The greatest number of MLOs (seven) was found on chromosome 3. A phylogenetic tree showed that the MLOs were divided into seven groups (I-VII), four of which consisted of MLOs from strawberry, Arabidopsis thaliana, rice, and maize, suggesting that these genes may have evolved after the divergence of monocots and dicots. Multiple sequence alignment showed that strawberry MLO candidates related to powdery mildew resistance possessed seven highly conserved transmembrane domains, a calmodulin-binding domain, and two conserved regions, all of which are important domains for powdery mildew resistance genes. Expressed sequence tag analysis revealed that the MLOs were induced by multiple abiotic stressors, including low and high temperature, drought, and high salinity. These findings will contribute to the functional characterization of MLOs related to PM susceptibility, and will assist in the development of disease resistance in strawberries.

The MLO (powdery mildew locus O) gene family is important in resistance to powdery mildew (PM). In this study, all of the members of the MLO family were identified and analyzed in the strawberry (Fragaria vesca) genome. The strawberry contains at least 20 members of the MLO family, and the protein sequence contained between 171 and 1485 amino acids, with 0-34 introns. Chromosomal localization showed that the MLOs were unevenly distributed on each of the chromosomes, except for chromosome 4. The greatest number of MLOs (seven) was found on chromosome 3. A phylogenetic tree showed that the MLOs were divided into seven groups (I-VII), four of which consisted of MLOs from strawberry, Arabidopsis thaliana, rice, and maize, suggesting that these genes may have evolved after the divergence of monocots and dicots. Multiple sequence alignment showed that strawberry MLO candidates related to powdery mildew resistance possessed seven highly conserved transmembrane domains, a calmodulin-binding domain, and two conserved regions, all of which are important domains for powdery mildew resistance genes. Expressed sequence tag analysis revealed that the MLOs were induced by multiple abiotic stressors, including low and high temperature, drought, and high salinity. These findings will contribute to the functional characterization of MLOs related to PM susceptibility, and will assist in the development of disease resistance in strawberries.