Research Article

Construction of a protein-protein interaction network of Wilms’ tumor and pathway prediction of molecular complexes

Published: May 23, 2016
Genet. Mol. Res. 15(2): gmr8365 DOI: https://doi.org/10.4238/gmr.15028365
Cite this Article:
(2016). Construction of a protein-protein interaction network of Wilms’ tumor and pathway prediction of molecular complexes. Genet. Mol. Res. 15(2): gmr8365. https://doi.org/10.4238/gmr.15028365
1,339 views

Abstract

Wilms’ tumor (WT), or nephroblastoma, is the most common malignant renal cancer that affects the pediatric population. Great progress has been achieved in the treatment of WT, but it cannot be cured at present. Nonetheless, a protein-protein interaction network of WT should provide some new ideas and methods. The purpose of this study was to analyze the protein-protein interaction network of WT. We screened the confirmed disease-related genes using the Online Mendelian Inheritance in Man database, created a protein-protein interaction network based on biological function in the Cytoscape software, and detected molecular complexes and relevant pathways that may be included in the network. The results showed that the protein-protein interaction network of WT contains 654 nodes, 1544 edges, and 5 molecular complexes. Among them, complex 1 is predicted to be related to the Jak-STAT signaling pathway, regulation of hematopoiesis by cytokines, cytokine-cytokine receptor interaction, cytokine and inflammatory responses, and hematopoietic cell lineage pathways. Molecular complex 4 shows a correlation of WT with colorectal cancer and the ErbB signaling pathway. The proposed method can provide the bioinformatic foundation for further elucidation of the mechanisms of WT development.

Wilms’ tumor (WT), or nephroblastoma, is the most common malignant renal cancer that affects the pediatric population. Great progress has been achieved in the treatment of WT, but it cannot be cured at present. Nonetheless, a protein-protein interaction network of WT should provide some new ideas and methods. The purpose of this study was to analyze the protein-protein interaction network of WT. We screened the confirmed disease-related genes using the Online Mendelian Inheritance in Man database, created a protein-protein interaction network based on biological function in the Cytoscape software, and detected molecular complexes and relevant pathways that may be included in the network. The results showed that the protein-protein interaction network of WT contains 654 nodes, 1544 edges, and 5 molecular complexes. Among them, complex 1 is predicted to be related to the Jak-STAT signaling pathway, regulation of hematopoiesis by cytokines, cytokine-cytokine receptor interaction, cytokine and inflammatory responses, and hematopoietic cell lineage pathways. Molecular complex 4 shows a correlation of WT with colorectal cancer and the ErbB signaling pathway. The proposed method can provide the bioinformatic foundation for further elucidation of the mechanisms of WT development.