Research Article

Transcriptome analysis and anthocyanin-related genes in red leaf lettuce

Published: January 29, 2016
Genet. Mol. Res. 15(1): gmr7023 DOI: 10.4238/gmr.15017023

Abstract

This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.