Research Article

Application of the ERK signaling pathway inhibitor PD98059 in long-term in vivo experiments

Published: December 28, 2015
Genet. Mol. Res. 14 (4) : 18325-18333 DOI: https://doi.org/10.4238/2015.December.23.20
Cite this Article:
X.Y. Chen, H.Z. Cai, X.Y. Wang, Q.Y. Chen, H. Yang, Y.J. Chen, Y.P. Tang (2015). Application of the ERK signaling pathway inhibitor PD98059 in long-term in vivo experiments. Genet. Mol. Res. 14(4): 18325-18333. https://doi.org/10.4238/2015.December.23.20
1,411 views

Abstract

The aim of this study was to explore methods by which the ERK signaling pathway inhibitor PD98059 (PD) could be used in long-term in vivo experiments. Forty healthy New Zealand rabbits were randomly divided into blank control, model control, PD low-dose, PD high-dose, PD blank, dimethyl sulfoxide (DMSO) control, DMSO blank, and positive control groups. The corresponding treatments were administered to each experimental group over the course of four weeks, after which, total ERK1/2 and ERK5 protein levels, protein phosphorylation, and gene expression were measured in myocardial tissues. Treatment of rabbits with Adriamycin (doxorubicin) resulted in the significant overall differences in ERK1/2 and ERK5 phosphorylation (P < 0.05). Compared with the model control group, changes in phosphorylated ERK1/2 and phosphorylated ERK5 were lowest in the PD high-dose group (P < 0.05). No significant differences in total protein and mRNA levels of myocardial ERK1/2 and ERK5 were detected between the groups after four weeks (P > 0.05). Continuous intravenous injection of PD98059 significantly reduced phosphorylation of ERK1/2 and that of ERK5. In conclusion, Adriamycin-induced myocardiopathy and abnormal ERK signaling might constitute a valuable model foruse in long-term experiments. These methods may provide a theoretical basis for related in vivo studies of long duration.

The aim of this study was to explore methods by which the ERK signaling pathway inhibitor PD98059 (PD) could be used in long-term in vivo experiments. Forty healthy New Zealand rabbits were randomly divided into blank control, model control, PD low-dose, PD high-dose, PD blank, dimethyl sulfoxide (DMSO) control, DMSO blank, and positive control groups. The corresponding treatments were administered to each experimental group over the course of four weeks, after which, total ERK1/2 and ERK5 protein levels, protein phosphorylation, and gene expression were measured in myocardial tissues. Treatment of rabbits with Adriamycin (doxorubicin) resulted in the significant overall differences in ERK1/2 and ERK5 phosphorylation (P < 0.05). Compared with the model control group, changes in phosphorylated ERK1/2 and phosphorylated ERK5 were lowest in the PD high-dose group (P < 0.05). No significant differences in total protein and mRNA levels of myocardial ERK1/2 and ERK5 were detected between the groups after four weeks (P > 0.05). Continuous intravenous injection of PD98059 significantly reduced phosphorylation of ERK1/2 and that of ERK5. In conclusion, Adriamycin-induced myocardiopathy and abnormal ERK signaling might constitute a valuable model foruse in long-term experiments. These methods may provide a theoretical basis for related in vivo studies of long duration.