Research Article

Association between N-acetyltransferase 2 polymorphisms and pancreatic cancer risk: a meta-analysis

Published: December 17, 2015
Genet. Mol. Res. 14 (4) : 17219-17227 DOI: 10.4238/2015.December.16.21

Abstract

N-acetyltransferase 2 (NAT2) is an essential phase II enzyme in the metabolism of aromatic and heterocyclic amines and of hydrazines. NAT2 activity can be divided into three phenotypes: rapid, intermediate, and slow. Studies identifying an association between NAT2 polymorphism and the risk of pancreatic cancer have shown conflicting results. In order to assess this relationship comprehensively, we performed a meta-analysis that involved 1607 patients with pancreatic cancer and 1682 controls from six studies, which were selected from a group of ten, identified by a search of PubMed and Embase databases up to July 2014. Relative risks (RRs) with 95% confidence intervals (CIs) were used to evaluate the relationships. In the overall analysis, no significant associations between NAT2 rapid acetylation genotypes and pancreatic cancer risk (RR = 0.93, 95%CI = 0.73-1.19) were found; however, the results showed significant heterogeneity (I2 = 55.0%). The results from subgroup analysis suggested that the rapid genotypes might decrease the risk of pancreatic cancer (RR = 0.56, 95%CI = 0.38-0.84) in Turkey, although the association was not significant in the United States population (RR = 0.97, 95%CI = 0.71-1.34) or in the multi-center studies (RR = 1.10, 95%CI = 0.90-1.34). Analysis of the slow acetylation genotypes demonstrated the converse outcomes. In conclusion, the results of our study suggested that the NAT2 slow acetylation genotypes might increase the susceptibility to pancreatic cancer in Europe but that these have no significant effects in the United States and multi-center populations.

N-acetyltransferase 2 (NAT2) is an essential phase II enzyme in the metabolism of aromatic and heterocyclic amines and of hydrazines. NAT2 activity can be divided into three phenotypes: rapid, intermediate, and slow. Studies identifying an association between NAT2 polymorphism and the risk of pancreatic cancer have shown conflicting results. In order to assess this relationship comprehensively, we performed a meta-analysis that involved 1607 patients with pancreatic cancer and 1682 controls from six studies, which were selected from a group of ten, identified by a search of PubMed and Embase databases up to July 2014. Relative risks (RRs) with 95% confidence intervals (CIs) were used to evaluate the relationships. In the overall analysis, no significant associations between NAT2 rapid acetylation genotypes and pancreatic cancer risk (RR = 0.93, 95%CI = 0.73-1.19) were found; however, the results showed significant heterogeneity (I2 = 55.0%). The results from subgroup analysis suggested that the rapid genotypes might decrease the risk of pancreatic cancer (RR = 0.56, 95%CI = 0.38-0.84) in Turkey, although the association was not significant in the United States population (RR = 0.97, 95%CI = 0.71-1.34) or in the multi-center studies (RR = 1.10, 95%CI = 0.90-1.34). Analysis of the slow acetylation genotypes demonstrated the converse outcomes. In conclusion, the results of our study suggested that the NAT2 slow acetylation genotypes might increase the susceptibility to pancreatic cancer in Europe but that these have no significant effects in the United States and multi-center populations.

About the Authors