Research Article

Genetic diversity in mutated and non-mutated rice varieties

Published: December 16, 2015
Genet. Mol. Res. 14 (4) : 17109-17123 DOI: 10.4238/2015.December.16.11

Abstract

We studied the genetic variability due to mutation induced by γ-rays (10, 15, and 20 Kr) on various traits of twelve rice genotypes. Mutated and non-mutated seeds were sown in the field between July 2013 and 2014 using a split plot design. Yield and yield-related trait data was recorded, which showed significant (P

We studied the genetic variability due to mutation induced by γ-rays (10, 15, and 20 Kr) on various traits of twelve rice genotypes. Mutated and non-mutated seeds were sown in the field between July 2013 and 2014 using a split plot design. Yield and yield-related trait data was recorded, which showed significant (P < 0.05) genotypic and irradiation effects. Gamma radiation exerted non-significant effects on the panicle length of all plants, indicating the uniformity of performance of this character at different radiation levels. The plant height, grains per main panicle, panicle length, 1000-grain weight, grain weight per main panicle, and fertility percentage was minimum in Basmati-198, Basmati-Pak, Shaheen-2000, Super Basmati, Basmati-385, and Super Basmati, respectively, when exposed to radiation at 20 Kr. However, Basmati-370 attained maximum flag leaf area at this level of radiation. Broad sense heritability ranged from 72.0 to 97.7%, indicating the possibility of selection during earlier generations. Phenotypic correlation was positive and significant between grain weight per main panicle with panicle length and flag leaf area. Number of grains per main panicle and genotypic correlation were positive among grain weight per main panicle, panicle length, fertility percentage, 1000-grain weight, and plant height, indicating the effectiveness of these traits in the selection for yield. Phylogenetic analyses revealed a pair-wise similarity ranging from 0.51-0.76 before mutation and 0.39-0.89 after mutation. This study proved that γ-rays at 20 Kr would be most effective in creating genetic variability in the existing germplasm.