Research Article

Effect of human umbilical cord mesenchymal stem cells on endometriotic cell proliferation and apoptosis

Published: December 11, 2015
Genet. Mol. Res. 14 (4) : 16553-16561 DOI: https://doi.org/10.4238/2015.December.11.2
Cite this Article:
L.N. Xu, N. Lin, B.N. Xu, J.B. Li, S.Q. Chen (2015). Effect of human umbilical cord mesenchymal stem cells on endometriotic cell proliferation and apoptosis. Genet. Mol. Res. 14(4): 16553-16561. https://doi.org/10.4238/2015.December.11.2
3,107 views

Abstract

The objective of this study was to observe the effects of human umbilical cord mesenchymal stem cells (UCMSCs) on the proliferation and apoptosis of endometriotic cells. Endometriotic cells and UCMSCs were primarily cultured in vitro. In the experimental group, a UCMSC and endometriotic cell non-contact co-culture system was established. The control group consisted of 1 x 105 endometriotic cells cultured alone. The proliferation and apoptosis of endometriotic cells were respectively detected using the MTT method and flow cytometry. The mRNA expression level of the tensin homologue gene (PTEN) in endometriotic cells was detected by reverse transcription-polymerase chain reaction amplification. Compared with the control group, the proliferation of endometriotic cells in the experimental group was clearly inhibited (P < 0.05) and time-dependent (P < 0.05). In addition, the number of apoptotic cells were significantly increased (P < 0.05), and the amount of cells, which entered S phase from G1 phase, decreased significantly. Furthermore, the mRNA expression level of the PTEN gene in the experimental group was significantly higher than in the control group (P < 0.05). These results suggest that UCMSCs might inhibit the proliferation of human endometriotic cells in vitro and promote their apoptosis by upregulating the expression of PTEN.

The objective of this study was to observe the effects of human umbilical cord mesenchymal stem cells (UCMSCs) on the proliferation and apoptosis of endometriotic cells. Endometriotic cells and UCMSCs were primarily cultured in vitro. In the experimental group, a UCMSC and endometriotic cell non-contact co-culture system was established. The control group consisted of 1 x 105 endometriotic cells cultured alone. The proliferation and apoptosis of endometriotic cells were respectively detected using the MTT method and flow cytometry. The mRNA expression level of the tensin homologue gene (PTEN) in endometriotic cells was detected by reverse transcription-polymerase chain reaction amplification. Compared with the control group, the proliferation of endometriotic cells in the experimental group was clearly inhibited (P < 0.05) and time-dependent (P < 0.05). In addition, the number of apoptotic cells were significantly increased (P < 0.05), and the amount of cells, which entered S phase from G1 phase, decreased significantly. Furthermore, the mRNA expression level of the PTEN gene in the experimental group was significantly higher than in the control group (P < 0.05). These results suggest that UCMSCs might inhibit the proliferation of human endometriotic cells in vitro and promote their apoptosis by upregulating the expression of PTEN.

About the Authors