Research Article

Genetic stability of micropropagated plants of Crambe abyssinica Hochst using ISSR markers

Published: December 09, 2015
Genet.Mol.Res. 14 (4) : 16450-16460 DOI: 10.4238/2015.December.9.16

Abstract

Crambe (Crambe abyssinica) is a non-edible annual herb, which was first cultivated to extract oil for industry, and now has great potential for biodiesel production. The objective of this investigation was to evaluate the genetic stability of micropropagated plants of the C. abyssinica Hochst cultivar ‘FMS brilhante’ using polymerase chain reaction techniques based on inter-simple sequence repeat (ISSR) molecular markers. The aim was to develop a protocol for the in vitro regeneration of these plants with low genetic variation as compared to the donor plant. For micropropagation, shoot tips from in vitro germinated seedlings were used as explants and were initially cultivated for 90 days on MS medium with 5.0 μM 6-benzylaminopurine (BAP), which at 90 days, led to the highest number of shoots per explant (NSE) (12.20 shoots) being detected. After 120 days, the interaction between BAP concentration and naphthalene acetic acid (NAA) was tested, and the highest NSE was observed following exposure to 0.0/0.5 μM BAP/NAA (11.40 shoots) and 1.0/0.0 μM BAP/NAA (11.00 shoots). The highest proportion of rooting phase were observed following exposure to 0.5 μM NAA (30%). The 13 ISSR primers used to analyze genetic stability produced 91 amplification products, of which only eight bands were polymorphic and 83 were monomorphic for all 10 regenerated crambe plants, compared to the donor plant explant. These results indicate that crambe shoot tips are a highly reliable explant that can be used to micropropagate genetically true-to-type plants or to maintain genetic stability, as verified using ISSR markers.

Crambe (Crambe abyssinica) is a non-edible annual herb, which was first cultivated to extract oil for industry, and now has great potential for biodiesel production. The objective of this investigation was to evaluate the genetic stability of micropropagated plants of the C. abyssinica Hochst cultivar ‘FMS brilhante’ using polymerase chain reaction techniques based on inter-simple sequence repeat (ISSR) molecular markers. The aim was to develop a protocol for the in vitro regeneration of these plants with low genetic variation as compared to the donor plant. For micropropagation, shoot tips from in vitro germinated seedlings were used as explants and were initially cultivated for 90 days on MS medium with 5.0 μM 6-benzylaminopurine (BAP), which at 90 days, led to the highest number of shoots per explant (NSE) (12.20 shoots) being detected. After 120 days, the interaction between BAP concentration and naphthalene acetic acid (NAA) was tested, and the highest NSE was observed following exposure to 0.0/0.5 μM BAP/NAA (11.40 shoots) and 1.0/0.0 μM BAP/NAA (11.00 shoots). The highest proportion of rooting phase were observed following exposure to 0.5 μM NAA (30%). The 13 ISSR primers used to analyze genetic stability produced 91 amplification products, of which only eight bands were polymorphic and 83 were monomorphic for all 10 regenerated crambe plants, compared to the donor plant explant. These results indicate that crambe shoot tips are a highly reliable explant that can be used to micropropagate genetically true-to-type plants or to maintain genetic stability, as verified using ISSR markers.