Research Article

Castor bean (Ricinus communis L.) as a potential environmental bioindicator

Published: October 21, 2015
Genet. Mol. Res. 14 (4) : 12880-12887 DOI: https://doi.org/10.4238/2015.October.21.8
Cite this Article:
(2015). Castor bean (Ricinus communis L.) as a potential environmental bioindicator. Genet. Mol. Res. 14(4): gmr6199. https://doi.org/10.4238/2015.October.21.8
1,616 views

Abstract

Biomonitoring of air quality using living organisms is a very interesting approach to environmental impact assessment. Organisms with a vast distribution, such as plants, are widely used for these purposes. The castor bean (Ricinus communis L.) is an oleaginous plant that can potentially be used as a bioindicator plant owing to its rapid growth and large leaves, which have a wide surface area of contact with the air and the pollutants therein. This study investigated the the bioindicator potential of the castor bean by performing several tests. We observed statistically significant differences in the concentrations of chlorophyll a and b in the leaves of plants in polluted areas compared to that in the control group plants, which were located in a pollution-free area. Leaves of plants in the former group had higher peroxidase activity and showed a greater buffering ability than those of plants in the control group. The pKa values obtained via buffering capacity tests, revealed the presence of aminoazobenzene (an industrial dye) in leaves of R. communis. Genotoxicity was evaluated through the comet assay technique and revealed that other than some differences in DNA fragmentation, there is no statistically significant difference in this parameter between places analyzed. Our data indicate that R. communis can be a highly useful biological indicator. Further, we hypothesized that the castor bean can be a potential candidate for phytoremediation owing its physiological buffering capacity when exposed to substantial pollution.

Biomonitoring of air quality using living organisms is a very interesting approach to environmental impact assessment. Organisms with a vast distribution, such as plants, are widely used for these purposes. The castor bean (Ricinus communis L.) is an oleaginous plant that can potentially be used as a bioindicator plant owing to its rapid growth and large leaves, which have a wide surface area of contact with the air and the pollutants therein. This study investigated the the bioindicator potential of the castor bean by performing several tests. We observed statistically significant differences in the concentrations of chlorophyll a and b in the leaves of plants in polluted areas compared to that in the control group plants, which were located in a pollution-free area. Leaves of plants in the former group had higher peroxidase activity and showed a greater buffering ability than those of plants in the control group. The pKa values obtained via buffering capacity tests, revealed the presence of aminoazobenzene (an industrial dye) in leaves of R. communis. Genotoxicity was evaluated through the comet assay technique and revealed that other than some differences in DNA fragmentation, there is no statistically significant difference in this parameter between places analyzed. Our data indicate that R. communis can be a highly useful biological indicator. Further, we hypothesized that the castor bean can be a potential candidate for phytoremediation owing its physiological buffering capacity when exposed to substantial pollution.