Research Article

Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster

Published: October 19, 2015
Genet. Mol. Res. 14 (4) : 12788-12796 DOI: https://doi.org/10.4238/2015.October.19.22
Cite this Article:
(2015). Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster. Genet. Mol. Res. 14(4): gmr6721. https://doi.org/10.4238/2015.October.19.22
1,796 views

Abstract

The UAS-Gal4 ectopic expression system is a widely used and highly valued tool that allows specific gene expression in Drosophila melanogaster. Yeast transcription factor Gal4 can be directed using D. melanogaster transcriptional control elements, and is often assumed to have little effect on the organism. By evaluation of the consequences of maternal and paternal inheritance of a Gal4 transgene under the transcriptional regulation of armadillo control elements (arm-Gal4), we demonstrated that Gal4 expression could be detrimental to development and longevity. Male progeny expressing arm-Gal4 in the presence of UAS-lacZ transgene had reduced numbers and size of ommatidia, compared to flies expressing UAS-lacZ transgene under the control of other Gal4 transgenes. Aged at 25°C, the median life span of male flies with maternally inherited elav-Gal4 was 70 days, without a responding transgene or with UAS-lacZ. The median life span of maternally inherited arm-Gal4 male flies without a responding transgene was 48 days, and 40 days with the UAS-lacZ transgene. A partial rescue of this phenotype was observed with the expression of UAS-lacZ under paternal arm-Gal4 control, having an average median lifespan of 60 days. This data suggests that arm-Gal4 has detrimental effects on Drosophila development and lifespan that are directly dependent upon parental inheritance, and that the benign responder and reporter gene UAS-lacZ may influence D. melanogaster development. These findings should be taken into consideration during the design and execution of UAS-Gal4 expression experiments.

The UAS-Gal4 ectopic expression system is a widely used and highly valued tool that allows specific gene expression in Drosophila melanogaster. Yeast transcription factor Gal4 can be directed using D. melanogaster transcriptional control elements, and is often assumed to have little effect on the organism. By evaluation of the consequences of maternal and paternal inheritance of a Gal4 transgene under the transcriptional regulation of armadillo control elements (arm-Gal4), we demonstrated that Gal4 expression could be detrimental to development and longevity. Male progeny expressing arm-Gal4 in the presence of UAS-lacZ transgene had reduced numbers and size of ommatidia, compared to flies expressing UAS-lacZ transgene under the control of other Gal4 transgenes. Aged at 25°C, the median life span of male flies with maternally inherited elav-Gal4 was 70 days, without a responding transgene or with UAS-lacZ. The median life span of maternally inherited arm-Gal4 male flies without a responding transgene was 48 days, and 40 days with the UAS-lacZ transgene. A partial rescue of this phenotype was observed with the expression of UAS-lacZ under paternal arm-Gal4 control, having an average median lifespan of 60 days. This data suggests that arm-Gal4 has detrimental effects on Drosophila development and lifespan that are directly dependent upon parental inheritance, and that the benign responder and reporter gene UAS-lacZ may influence D. melanogaster development. These findings should be taken into consideration during the design and execution of UAS-Gal4 expression experiments.

About the Authors