Research Article

Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica

Published: October 02, 2015
Genet. Mol. Res. 14 (4) : 11827-11840 DOI: 10.4238/2015.October.2.16

Abstract

Spontaneous leaf color variation in bamboo provides the opportunity to study the mechanisms of leaf color formation and the breeding of ornamental bamboos. Despite the fact that many genes are known to be involved in leaf color variation in model plants, molecular mechanisms governing natural leaf color variation in bamboo have remained obscure. This study aimed to identify the genes responsible for the occurrence of such phenomena in bamboo using the suppression subtractive hybridization (SSH) method between green and albino leaves in Pseudosasa japonica f. A total of 1062 and 1004 differentially expressed transcripts were obtained from the forward and reverse SSH libraries, respectively. Subsequently, 59 differentially expressed unigenes with potential roles in leaf color formation, predicted via computational analysis of their functional relevance, were selected for further analysis using qPCR. Ten genes, involved in photosynthesis, plastid development, and cation signal transduction, showed 2-fold changes in expression levels between green and albino leaves. Further expression pattern analyses of these genes at three developmental stages revealed much lower expression abundance of Lhca1-encoded chlorophyll a/b binding protein in the albino leaves than in the green leaves. Our results suggest that, together with the concatenated negative pressure for subsequent photosynthetic processes, the albino phenotype is at least partly attributable to chloroplast inner membrane damage or to the impairment of photosynthetic pigment accumulation, which results from low Lhca1 expression.

Spontaneous leaf color variation in bamboo provides the opportunity to study the mechanisms of leaf color formation and the breeding of ornamental bamboos. Despite the fact that many genes are known to be involved in leaf color variation in model plants, molecular mechanisms governing natural leaf color variation in bamboo have remained obscure. This study aimed to identify the genes responsible for the occurrence of such phenomena in bamboo using the suppression subtractive hybridization (SSH) method between green and albino leaves in Pseudosasa japonica f. A total of 1062 and 1004 differentially expressed transcripts were obtained from the forward and reverse SSH libraries, respectively. Subsequently, 59 differentially expressed unigenes with potential roles in leaf color formation, predicted via computational analysis of their functional relevance, were selected for further analysis using qPCR. Ten genes, involved in photosynthesis, plastid development, and cation signal transduction, showed 2-fold changes in expression levels between green and albino leaves. Further expression pattern analyses of these genes at three developmental stages revealed much lower expression abundance of Lhca1-encoded chlorophyll a/b binding protein in the albino leaves than in the green leaves. Our results suggest that, together with the concatenated negative pressure for subsequent photosynthetic processes, the albino phenotype is at least partly attributable to chloroplast inner membrane damage or to the impairment of photosynthetic pigment accumulation, which results from low Lhca1 expression.