Research Article

Identification and analysis of the TIFY gene family in Gossypium raimondii

Published: August 21, 2015
Genet. Mol. Res. 14 (3) : 10119-10138 DOI: 10.4238/2015.August.21.19

Abstract

The highly conserved TIFY domain is included in the TIFY protein family of transcription factors, which is important in plant development. Here, 28 TIFY family genes were identified in the Gossypium raimondii genome and classified into JAZ (15 genes), ZML (8), PPD (3), and TIFY (2). The normal (TIF[F/Y]XG) motif was dominant in the TIFY family, excluding the ZML subfamily, in which TLSFXG was prevalent. TIFY family genes were unevenly distributed in the G. raimondii genome, with TIFY clusters present on chromosome 9. Phylogenetic analysis indicated abundant variations in the G. raimondii TIFY family, which were most closely related to those in Theobroma cacao among 5 species. Exon-intron organization and intron phases were homologous within each subfamily, correlating with their phylogeny. Intra-species synteny analyses indicated that genomic duplication contributed to the expansion of the TIFY family. Inter-species synteny analyses indicated that synteny regions involved in G. raimondii TIFY family genes were also present in the comparison of G. raimondii vs Arabidopsis thaliana or T. cacao, signifying that these genes had common ancestors and play the same or similar roles in biological processes. Greater synteny was present in the comparison of G. raimondii vs T. cacao than of G. raimondii vs A. thaliana. The expression patterns of TIFY family genes were characterized and most TIFY family genes were indicated to be involved in fiber development. Our study provides new data related to the evolution of TIFYs and their role as important regulators of transcription; these data can be useful for fiber development.

The highly conserved TIFY domain is included in the TIFY protein family of transcription factors, which is important in plant development. Here, 28 TIFY family genes were identified in the Gossypium raimondii genome and classified into JAZ (15 genes), ZML (8), PPD (3), and TIFY (2). The normal (TIF[F/Y]XG) motif was dominant in the TIFY family, excluding the ZML subfamily, in which TLSFXG was prevalent. TIFY family genes were unevenly distributed in the G. raimondii genome, with TIFY clusters present on chromosome 9. Phylogenetic analysis indicated abundant variations in the G. raimondii TIFY family, which were most closely related to those in Theobroma cacao among 5 species. Exon-intron organization and intron phases were homologous within each subfamily, correlating with their phylogeny. Intra-species synteny analyses indicated that genomic duplication contributed to the expansion of the TIFY family. Inter-species synteny analyses indicated that synteny regions involved in G. raimondii TIFY family genes were also present in the comparison of G. raimondii vs Arabidopsis thaliana or T. cacao, signifying that these genes had common ancestors and play the same or similar roles in biological processes. Greater synteny was present in the comparison of G. raimondii vs T. cacao than of G. raimondii vs A. thaliana. The expression patterns of TIFY family genes were characterized and most TIFY family genes were indicated to be involved in fiber development. Our study provides new data related to the evolution of TIFYs and their role as important regulators of transcription; these data can be useful for fiber development.