Research Article

Pathway-based network analysis of myeloma tumors: monoclonal gammopathy of unknown significance, smoldering multiple myeloma, and multiple myeloma

Published: August 14, 2015
Genet. Mol. Res. 14 (3) : 9571-9584 DOI: 10.4238/2015.August.14.20

Abstract

Although many studies have been carried out on monoclonal gammopathy of unknown significances (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM), their classification and underlying pathogenesis are far from elucidated. To discover the relationships among MGUS, SMM, and MM at the transcriptome level, differentially expressed genes in MGUS, SMM, and MM were identified by the rank product method, and then co-expression networks were constructed by integrating the data. Finally, a pathway-network was constructed based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and the relationships between the pathways were identified. The results indicated that there were 55, 78, and 138 pathways involved in the myeloma tumor developmental stages of MGUS, SMM, and MM, respectively. The biological processes identified therein were found to have a close relationship with the immune system. Processes and pathways related to the abnormal activity of DNA and RNA were also present in SMM and MM. Six common pathways were found in the whole process of myeloma tumor development. Nine pathways were shown to participate in the progression of MGUS to SMM, and prostate cancer was the sole pathway that was involved only in MGUS and MM. Pathway-network analysis might provide a new indicator for the developmental stage diagnosis of myeloma tumors.

Although many studies have been carried out on monoclonal gammopathy of unknown significances (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM), their classification and underlying pathogenesis are far from elucidated. To discover the relationships among MGUS, SMM, and MM at the transcriptome level, differentially expressed genes in MGUS, SMM, and MM were identified by the rank product method, and then co-expression networks were constructed by integrating the data. Finally, a pathway-network was constructed based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and the relationships between the pathways were identified. The results indicated that there were 55, 78, and 138 pathways involved in the myeloma tumor developmental stages of MGUS, SMM, and MM, respectively. The biological processes identified therein were found to have a close relationship with the immune system. Processes and pathways related to the abnormal activity of DNA and RNA were also present in SMM and MM. Six common pathways were found in the whole process of myeloma tumor development. Nine pathways were shown to participate in the progression of MGUS to SMM, and prostate cancer was the sole pathway that was involved only in MGUS and MM. Pathway-network analysis might provide a new indicator for the developmental stage diagnosis of myeloma tumors.