Research Article

Effects of washed platelets vs platelet-rich plasma on the proliferation and mineralization of rat dental pulp cells

Published: August 14, 2015
Genet. Mol. Res. 14 (3) : 9486-9496 DOI: https://doi.org/10.4238/2015.August.14.12
Cite this Article:
(2015). Effects of washed platelets vs platelet-rich plasma on the proliferation and mineralization of rat dental pulp cells. Genet. Mol. Res. 14(3): gmr5818. https://doi.org/10.4238/2015.August.14.12
1,375 views

Abstract

We examined the effects of washed platelets (WPLTs) and platelet-rich plasma (PRP) on the proliferation and mineralization of rat dental pulp cells. Rat dental pulp cells were separated, cultured, and identified. Medium containing 1, 10, 100, or 500 mL/L PRP or WPLTs was added to 4th generation cells. The MTS method was used to determine cell proliferation. Alizarin red staining was used to observe the formation of mineralized nodules after cell mineralization and induction for 10 and 20 days under different culture conditions, and the areas of the mineralized nodules formed 20 days after induction were computed. The addition of 1, 10, and 100 mL/L WPLTs or PRP significantly promoted rat dental pulp cell proliferation (P 0.05). Under the same concentrations, no significant differences on cell proliferation were observed between WPLT and PRP treatments (P > 0.05 in all groups). After 10 days mineralization and culture, the 100 and 500 mL/L WPLT and PRP group positive nodule rates were significantly higher than those of the low concentration and the control groups (P

We examined the effects of washed platelets (WPLTs) and platelet-rich plasma (PRP) on the proliferation and mineralization of rat dental pulp cells. Rat dental pulp cells were separated, cultured, and identified. Medium containing 1, 10, 100, or 500 mL/L PRP or WPLTs was added to 4th generation cells. The MTS method was used to determine cell proliferation. Alizarin red staining was used to observe the formation of mineralized nodules after cell mineralization and induction for 10 and 20 days under different culture conditions, and the areas of the mineralized nodules formed 20 days after induction were computed. The addition of 1, 10, and 100 mL/L WPLTs or PRP significantly promoted rat dental pulp cell proliferation (P < 0.05) whereas 500 mL/L WPLTs or PRP had no significant effect (P > 0.05). Under the same concentrations, no significant differences on cell proliferation were observed between WPLT and PRP treatments (P > 0.05 in all groups). After 10 days mineralization and culture, the 100 and 500 mL/L WPLT and PRP group positive nodule rates were significantly higher than those of the low concentration and the control groups (P < 0.05). After 20 days, the areas of the mineralized nodules formed in the 100 and 500 mL/L WPLT and PRP groups were significantly larger than those in the control group (P < 0.05). These results demonstrate that both WPLTs and PRP are equally able to significantly promote the proliferation and calcification of rat dental pulp cells under a certain range of concentrations.

About the Authors