Research Article

Role of adiponectin in adipose tissue wound healing

Published: August 03, 2015
Genet. Mol. Res. 14 (3) : 8883-8891 DOI: https://doi.org/10.4238/2015.August.3.11
Cite this Article:
C.E. Jin, L. Xiao, Z.H. Ge, X.B. Zhan, H.X. Zhou (2015). Role of adiponectin in adipose tissue wound healing. Genet. Mol. Res. 14(3): 8883-8891. https://doi.org/10.4238/2015.August.3.11
3,186 views

Abstract

The purpose of this study was to investigate the mechanism behind adipose tissue wound healing (ATWH). The preadipocyte cell line 3T3-L1 was cultured and expression of adiponectin receptors (AdipoR1/2) was detected by immunohistochemistry and reverse transcription polymerase chain reaction. The concentration of adiponectin secreted at different cell densities was measured by enzyme-linked immunosorbent assay, while preadipocyte proliferation and migration were determined in vitro by MTT and wound closure assays. AdipoR1/2 were found to be expressed in 3T3-L1 preadipocytes. There were no statistically significant differences in the concentrations of adiponectin secreted by cell solutions of different densities (P > 0.05). In addition, adiponectin was seen to promote the growth and migration of preadipocytes. In conclusion, adiponectin may regulate ATWH by promoting preadipocyte proliferation and migration, and its systemic and/or local application is proposed as a promising therapeutic approach for the treatment of wounds incurred as a result of surgery.

The purpose of this study was to investigate the mechanism behind adipose tissue wound healing (ATWH). The preadipocyte cell line 3T3-L1 was cultured and expression of adiponectin receptors (AdipoR1/2) was detected by immunohistochemistry and reverse transcription polymerase chain reaction. The concentration of adiponectin secreted at different cell densities was measured by enzyme-linked immunosorbent assay, while preadipocyte proliferation and migration were determined in vitro by MTT and wound closure assays. AdipoR1/2 were found to be expressed in 3T3-L1 preadipocytes. There were no statistically significant differences in the concentrations of adiponectin secreted by cell solutions of different densities (P > 0.05). In addition, adiponectin was seen to promote the growth and migration of preadipocytes. In conclusion, adiponectin may regulate ATWH by promoting preadipocyte proliferation and migration, and its systemic and/or local application is proposed as a promising therapeutic approach for the treatment of wounds incurred as a result of surgery.