Technical Note

Identification of nutrient-dependent changes in extracellular pH and acid phosphatase secretion in Aspergillus nidulans

Published: September 30, 2007
Genet. Mol. Res. 6 (3) : 721-729
Cite this Article:
J.S. Freitas, E.M. Silva, A. Rossi (2007). Identification of nutrient-dependent changes in extracellular pH and acid phosphatase secretion in Aspergillus nidulans. Genet. Mol. Res. 6(3): 721-729.
2,667 views

Abstract

The present study was designed to identify nutrient-dependent changes in extracellular pH and acid phosphatase secretion in the biA1 palC4 mutant strain of Aspergillus nidulans. The palC4 mutant was selected as lacking alkaline phosphatase, but having substantially increased acid phosphatase activity when grown on solid minimal medium under phosphate starvation, pH 6.5. Gene palC was identified as a putative member of a conserved signaling cascade involved in ambient alkaline sensing whose sole function is to promote the proteolytic activation of PacC at alkaline pH. We showed that both poor growth and conidiation of the palC4 mutant strain on solid medium, alkaline pH, were relative to its hypersensitivity to Tris (hydroxymethyl) aminomethane buffer. Also, the secretion of acid phosphatase was repressed when both the wild-type and palC4 mutant strains were grown in low-phosphate yeast extract liquid medium, pH 5.0, indicating that the secretion of this enzyme is not necessary to regenerate inorganic phosphate from the organic phosphate pool present in yeast extract.

The present study was designed to identify nutrient-dependent changes in extracellular pH and acid phosphatase secretion in the biA1 palC4 mutant strain of Aspergillus nidulans. The palC4 mutant was selected as lacking alkaline phosphatase, but having substantially increased acid phosphatase activity when grown on solid minimal medium under phosphate starvation, pH 6.5. Gene palC was identified as a putative member of a conserved signaling cascade involved in ambient alkaline sensing whose sole function is to promote the proteolytic activation of PacC at alkaline pH. We showed that both poor growth and conidiation of the palC4 mutant strain on solid medium, alkaline pH, were relative to its hypersensitivity to Tris (hydroxymethyl) aminomethane buffer. Also, the secretion of acid phosphatase was repressed when both the wild-type and palC4 mutant strains were grown in low-phosphate yeast extract liquid medium, pH 5.0, indicating that the secretion of this enzyme is not necessary to regenerate inorganic phosphate from the organic phosphate pool present in yeast extract.

About the Authors
Download: