Research Article

imDC: an ensemble learning method for imbalanced classification with miRNA data

Published: January 15, 2015
Genet. Mol. Res. 14 (1) : 123-133 DOI: https://doi.org/10.4238/2015.January.15.15
Cite this Article:
C.Y. Wang, L.L. Hu, M.Z. Guo, X.Y. Liu, Q. Zou (2015). imDC: an ensemble learning method for imbalanced classification with miRNA data. Genet. Mol. Res. 14(1): 123-133. https://doi.org/10.4238/2015.January.15.15
2,598 views

Abstract

Imbalances typically exist in bioinformatics and are also common in other areas. A drawback of traditional machine learning methods is the relatively little attention given to small sample classification. Thus, we developed imDC, which uses an ensemble learning concept in combination with weights and sample misclassification information to effectively classify imbalanced data. Our method showed better results when compared to other algorithms with UCI machine learning datasets and microRNA data.

Imbalances typically exist in bioinformatics and are also common in other areas. A drawback of traditional machine learning methods is the relatively little attention given to small sample classification. Thus, we developed imDC, which uses an ensemble learning concept in combination with weights and sample misclassification information to effectively classify imbalanced data. Our method showed better results when compared to other algorithms with UCI machine learning datasets and microRNA data.