Research Article

Association between CYP1A1m1 gene polymorphism and primary open-angle glaucoma

Published: December 04, 2014
Genet. Mol. Res. 13 (4) : 10382-10389 DOI: https://doi.org/10.4238/2014.December.4.33
Cite this Article:
N.B. Costa, C.T.X. Silva, A.B. Frare, R.E. Silva, K.K.V.O. Moura (2014). Association between CYP1A1m1 gene polymorphism and primary open-angle glaucoma. Genet. Mol. Res. 13(4): 10382-10389. https://doi.org/10.4238/2014.December.4.33
3,754 views

Abstract

The CYP1A1 gene is related to the generation of secondary metabolites that are capable of inducing DNA damage. The CYP1A1m1 polymorphism has been examined in many studies, and is located in a region near loci that have been linked to glaucoma, including the locus GLC1I. As a result, this polymorphism has been related to several diseases that are influenced by exposure to xenobiotic as well as primary open-angle glaucoma. We compared the prevalence of the CYP1A1m1 polymorphism in 152 Brazilian patients, 100 patients with primary open-angle glaucoma, and 52 normal controls using restriction fragment length polymorphism analysis. The frequency of the homozygous wild-type (w1/w1) CYP1A1 gene among patients with primary open-angle glaucoma (N = 100) was 16%, for genotype w1/m1, the frequency was 77%, and for m1/m1 it was 7%. Among the control group (N = 52), the frequency of the homozygous wild-type (w1/w1) CYP1A1 gene was 54%, the frequency of w1/m1 was 46%, and the frequency of m1/m1 was 0%. The presence of the CYP1A1m1 polymorphism may interfere with xenobiotic metabolism and exacerbate direct or indirect damage to the optic nerve. These CYP1A1m1 polymorphisms may be risk factors for primary open-angle glaucoma.

The CYP1A1 gene is related to the generation of secondary metabolites that are capable of inducing DNA damage. The CYP1A1m1 polymorphism has been examined in many studies, and is located in a region near loci that have been linked to glaucoma, including the locus GLC1I. As a result, this polymorphism has been related to several diseases that are influenced by exposure to xenobiotic as well as primary open-angle glaucoma. We compared the prevalence of the CYP1A1m1 polymorphism in 152 Brazilian patients, 100 patients with primary open-angle glaucoma, and 52 normal controls using restriction fragment length polymorphism analysis. The frequency of the homozygous wild-type (w1/w1) CYP1A1 gene among patients with primary open-angle glaucoma (N = 100) was 16%, for genotype w1/m1, the frequency was 77%, and for m1/m1 it was 7%. Among the control group (N = 52), the frequency of the homozygous wild-type (w1/w1) CYP1A1 gene was 54%, the frequency of w1/m1 was 46%, and the frequency of m1/m1 was 0%. The presence of the CYP1A1m1 polymorphism may interfere with xenobiotic metabolism and exacerbate direct or indirect damage to the optic nerve. These CYP1A1m1 polymorphisms may be risk factors for primary open-angle glaucoma.