Research Article

Selection of DNA barcoding loci and phylogenetic study of a medicinal and endemic plant, Plectranthus asirensis J.R.I. Wood from Saudi Arabia

Published: August 07, 2014
Genet. Mol. Res. 13 (3) : 6184-6190 DOI: https://doi.org/10.4238/2014.August.7.31
Cite this Article:
F. Al-Qurainy, S. Khan, M. Nadeem, M. Tarroum, A. Al-Ameri (2014). Selection of DNA barcoding loci and phylogenetic study of a medicinal and endemic plant, Plectranthus asirensis J.R.I. Wood from Saudi Arabia. Genet. Mol. Res. 13(3): 6184-6190. https://doi.org/10.4238/2014.August.7.31
3,365 views

Abstract

Genuine medicinal plant materials are very important for potential crude drug production, which can be used to cure many human diseases. DNA barcoding of medicinal plants is an effective way to identify adulterated or contaminated market materials, but it can be quite challenging to generate barcodes and analyze the data to determine discrimination power. The molecular phylogeny of a plant species infers its relationship to other species. We screened the various loci of the nuclear and chloroplast genome for the barcoding of Plectranthus asirensis, an endemic plant of Saudi Arabia. The chloroplast genome loci such as rps16 and rpoB showed maximum similarity to taxa of the same and other genera via BLAST of the National Center for Biotechnology Information (NCBI) GenBank database; hence, they are less preferable for the development of a DNA barcode. However, nrDNA-ITS and chloroplast loci rbcL and rpoC1 showed less similarity via BLAST of the NCBI GenBank database; therefore, they could be used for DNA barcoding for this species.

Genuine medicinal plant materials are very important for potential crude drug production, which can be used to cure many human diseases. DNA barcoding of medicinal plants is an effective way to identify adulterated or contaminated market materials, but it can be quite challenging to generate barcodes and analyze the data to determine discrimination power. The molecular phylogeny of a plant species infers its relationship to other species. We screened the various loci of the nuclear and chloroplast genome for the barcoding of Plectranthus asirensis, an endemic plant of Saudi Arabia. The chloroplast genome loci such as rps16 and rpoB showed maximum similarity to taxa of the same and other genera via BLAST of the National Center for Biotechnology Information (NCBI) GenBank database; hence, they are less preferable for the development of a DNA barcode. However, nrDNA-ITS and chloroplast loci rbcL and rpoC1 showed less similarity via BLAST of the NCBI GenBank database; therefore, they could be used for DNA barcoding for this species.