Research Article

Production and genetic characterization of interspecific hybrids among Crambe abyssinica, Crambe hispanica and Crambe kralikii

Published: March 26, 2014
Genet. Mol. Res. 13 (3) : 6995-7005 DOI: https://doi.org/10.4238/2014.March.26.2
Cite this Article:
X.Z. Du, B.L. Huang, H. Guan, Z.Y. Li, B.Q. Huang (2014). Production and genetic characterization of interspecific hybrids among Crambe abyssinica, Crambe hispanica and Crambe kralikii. Genet. Mol. Res. 13(3): 6995-7005. https://doi.org/10.4238/2014.March.26.2
3,929 views

Abstract

In this paper, interspecific crosses among Crambe abyssinica, Crambe hispanica, and Crambe kralikii were reported. In the C. hispanica x C. abyssinica (H x A) cross, 118 F1 hybrids were produced without embryo rescue, while 5 F1 hybrids were obtained with embryo rescue, when C. hispanica was used as the female parent. In the reciprocal cross (A x H), 232 hybrids were obtained without embryo rescue. From more than 1000 C. kralikii flowers pollinated with pollen grains of C. abyssinica (K x A), only 2 F1 hybrids were obtained with embryo rescue, whereas the reciprocal cross produced no hybrids, even with embryo rescue. The hybrids were confirmed at the morphological, cytological, and molecular levels. In the combinations of A x H and H x A, many BC1 hybrids were obtained without embryo rescue. In contrast, in the K x A cross, only 7 BC1 plants were obtained with embryo rescue, while no seed set was achieved under self-pollination or in backcrosses without embryo rescue. In the H x A F1 hybrids, the pollen stainability was 65.4-86.0%, with an average of 76.9%. In comparison, the pollen viability of hybrids in the reciprocal cross (A x H) ranged from 66.2 to 81.1%, with an average of 75.4%. Fertile pollen grains were not found in the K x A F1 hybrids. All F1 hybrids of the 3 crosses (H x A, A x H, and K x A) had the expected 2n = 75 chromosomes. AFLP analyses indicated that all F1 hybrids and their progenies had typical bands of the parents. These hybrids and progenies are anticipated to be valuable for future C. abyssinica improvement in breeding programs.

In this paper, interspecific crosses among Crambe abyssinica, Crambe hispanica, and Crambe kralikii were reported. In the C. hispanica x C. abyssinica (H x A) cross, 118 F1 hybrids were produced without embryo rescue, while 5 F1 hybrids were obtained with embryo rescue, when C. hispanica was used as the female parent. In the reciprocal cross (A x H), 232 hybrids were obtained without embryo rescue. From more than 1000 C. kralikii flowers pollinated with pollen grains of C. abyssinica (K x A), only 2 F1 hybrids were obtained with embryo rescue, whereas the reciprocal cross produced no hybrids, even with embryo rescue. The hybrids were confirmed at the morphological, cytological, and molecular levels. In the combinations of A x H and H x A, many BC1 hybrids were obtained without embryo rescue. In contrast, in the K x A cross, only 7 BC1 plants were obtained with embryo rescue, while no seed set was achieved under self-pollination or in backcrosses without embryo rescue. In the H x A F1 hybrids, the pollen stainability was 65.4-86.0%, with an average of 76.9%. In comparison, the pollen viability of hybrids in the reciprocal cross (A x H) ranged from 66.2 to 81.1%, with an average of 75.4%. Fertile pollen grains were not found in the K x A F1 hybrids. All F1 hybrids of the 3 crosses (H x A, A x H, and K x A) had the expected 2n = 75 chromosomes. AFLP analyses indicated that all F1 hybrids and their progenies had typical bands of the parents. These hybrids and progenies are anticipated to be valuable for future C. abyssinica improvement in breeding programs.