Research Article

Characterization of the β-1,3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation

Published: March 17, 2014
Genet. Mol. Res. 13 (1) : 1893-1904 DOI: https://doi.org/10.4238/2014.March.17.17
Cite this Article:
L.X. Qiao, X. Ding, H.C. Wang, J.M. Sui, J.S. Wang (2014). Characterization of the β-1,3-glucanase gene in peanut (Arachis hypogaea L.) by cloning and genetic transformation. Genet. Mol. Res. 13(1): 1893-1904. https://doi.org/10.4238/2014.March.17.17
3,210 views

Abstract

Plant β-1,3-glucanases are commonly involved in disease resistance. This report describes the cloning and genetic transformation of a β-1,3-glucanase gene from peanut. The gene was isolated from both the genomic DNA and cDNA of peanut variety Huayu20 by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), respectively. The DNA sequence contained 1471 bp including two exons and one intron, and the coding sequence contained 1047 bp that coded for a 348-amino acid protein with a calculated molecular weight of 38.8 kDa. The sequence was registered in NCBI (GenBank accession No. JQ801335) and was designated as Ah-Glu. As determined by BLAST analysis, the Ah-Glu protein has 42-90% homology with proteins from Oryza sativa (BAC83070.1), Zea mays (NP_001149308), Arabidopsis thaliana (NP_200470.1), Medicago sativa (ABD91577.1), and Glycine max (XP_003530515.1). The over-expression vector pCAMBIA1301-Glu containing Ah-Glu was constructed, confirmed by PCR and restriction enzyme digestion, and transformed into peanut variety Huayu22 by Agrobacterium EHA105-mediated transformation. The putative transformed plants (T0) were confirmed by PCR amplification. RT-PCR analysis and β-glucuronidase (GUS) staining showed that the transferred Ah-Glu was expressed as mRNA and protein. In a laboratory test, the transgenic plants were found to be more resistant to the fungal pathogen Cercospora personata than the non-transgenic plants were.

Plant β-1,3-glucanases are commonly involved in disease resistance. This report describes the cloning and genetic transformation of a β-1,3-glucanase gene from peanut. The gene was isolated from both the genomic DNA and cDNA of peanut variety Huayu20 by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), respectively. The DNA sequence contained 1471 bp including two exons and one intron, and the coding sequence contained 1047 bp that coded for a 348-amino acid protein with a calculated molecular weight of 38.8 kDa. The sequence was registered in NCBI (GenBank accession No. JQ801335) and was designated as Ah-Glu. As determined by BLAST analysis, the Ah-Glu protein has 42-90% homology with proteins from Oryza sativa (BAC83070.1), Zea mays (NP_001149308), Arabidopsis thaliana (NP_200470.1), Medicago sativa (ABD91577.1), and Glycine max (XP_003530515.1). The over-expression vector pCAMBIA1301-Glu containing Ah-Glu was constructed, confirmed by PCR and restriction enzyme digestion, and transformed into peanut variety Huayu22 by Agrobacterium EHA105-mediated transformation. The putative transformed plants (T0) were confirmed by PCR amplification. RT-PCR analysis and β-glucuronidase (GUS) staining showed that the transferred Ah-Glu was expressed as mRNA and protein. In a laboratory test, the transgenic plants were found to be more resistant to the fungal pathogen Cercospora personata than the non-transgenic plants were.