Research Article

Cross-amplification and characterization of microsatellite loci in Acropora austera from the south-western Indian Ocean

Published: February 27, 2014
Genet. Mol. Res. 13 (1) : 1244-1250 DOI: https://doi.org/10.4238/2014.February.27.9
Cite this Article:
(2014). Cross-amplification and characterization of microsatellite loci in Acropora austera from the south-western Indian Ocean. Genet. Mol. Res. 13(1): gmr3232. https://doi.org/10.4238/2014.February.27.9
1,841 views

Abstract

Here, we report the successful cross-species amplification of previously published acroporid microsatellite markers in the coral Acropora austera from the south-western Indian Ocean. This fast-growing species is a major reef-building coral on South African reefs; however, it is the most damaged coral by scuba diving activity, and is known to be very susceptible to coral bleaching. Neither genetic information nor symbiont-free host tissue was available to develop novel microsatellite markers for this species. Cross-species amplification of previously published microsatellite markers was considered as an alternative to overcome these problems. Of the 21 microsatellite markers tested, 6 were reliably amplified, scored, and found to contain polymorphic loci (3-15 alleles). Although microsatellite sequences are believed to be scarce in the Acropora genome because of its small size, the results of this study and previous research indicate that the microsatellite sequences are well conserved across Acropora species. A detailed screening process identified and quantified the sources of error and bias in the application of these markers (e.g., allele scoring error, failure rates, frequency of null alleles), and may be accounted for in the study of the contemporary gene flow of A. austera in the south-western Indian Ocean.

Here, we report the successful cross-species amplification of previously published acroporid microsatellite markers in the coral Acropora austera from the south-western Indian Ocean. This fast-growing species is a major reef-building coral on South African reefs; however, it is the most damaged coral by scuba diving activity, and is known to be very susceptible to coral bleaching. Neither genetic information nor symbiont-free host tissue was available to develop novel microsatellite markers for this species. Cross-species amplification of previously published microsatellite markers was considered as an alternative to overcome these problems. Of the 21 microsatellite markers tested, 6 were reliably amplified, scored, and found to contain polymorphic loci (3-15 alleles). Although microsatellite sequences are believed to be scarce in the Acropora genome because of its small size, the results of this study and previous research indicate that the microsatellite sequences are well conserved across Acropora species. A detailed screening process identified and quantified the sources of error and bias in the application of these markers (e.g., allele scoring error, failure rates, frequency of null alleles), and may be accounted for in the study of the contemporary gene flow of A. austera in the south-western Indian Ocean.