Research Article

Cloning and expression analysis of the 37-kDa laminin receptor precursor gene from Hyriopsis cumingii

Published: December 02, 2013
Genet. Mol. Res. 12 (4) : 6130-6139 DOI: https://doi.org/10.4238/2013.December.2.10
Cite this Article:
X.Z. Chang, J.L. Li, Z.Y. Bai, X.L. Li (2013). Cloning and expression analysis of the 37-kDa laminin receptor precursor gene from Hyriopsis cumingii. Genet. Mol. Res. 12(4): 6130-6139. https://doi.org/10.4238/2013.December.2.10
2,986 views

Abstract

Hyriopsis cumingii is an economically important freshwater pearl mussel with high pearl quality that is endemic in China. Investigation of genes relevant to shell formation is important for increased pearl output. The substances that form mollusk shells are secreted by epithelial cells in the mantle, the proliferation of which influences secretion ability. This study focused on the proliferation-related 37-kDa laminin receptor precursor (37LRP) of H. cumingii. The full-length cDNA (1133 bp) encoding this 300-amino acid protein was cloned from the mantle. Quantitative fluorescence analysis showed that 37LRP expressed in eight tissues, with the highest expression observed in the liver, and its expression pattern in the mantle reflected shell repair. During repair, 37LRP expression was higher in the experimental shell repair group than that in the control group, exhibiting an initial increase followed by a decrease in expression, and returning to basal levels on completion of the repair. A similar trend was also observed with respect to immunity and cellular metabolism. Expression of the 37LRP protein in the experimental group was significantly higher than that in the control group at the first and second days after shell injury. After 4 days, 37LRP expression in the experimental group was lower than that in the control group. In situ hybridization revealed a strong positive signal corresponding to the 37LRP mRNA at the horny grooves of the mantle, evagination, and in epithelial cells of the velum, which implicated these areas in the repair and formation of the cuticle, prismatic layer, and nacre.

Hyriopsis cumingii is an economically important freshwater pearl mussel with high pearl quality that is endemic in China. Investigation of genes relevant to shell formation is important for increased pearl output. The substances that form mollusk shells are secreted by epithelial cells in the mantle, the proliferation of which influences secretion ability. This study focused on the proliferation-related 37-kDa laminin receptor precursor (37LRP) of H. cumingii. The full-length cDNA (1133 bp) encoding this 300-amino acid protein was cloned from the mantle. Quantitative fluorescence analysis showed that 37LRP expressed in eight tissues, with the highest expression observed in the liver, and its expression pattern in the mantle reflected shell repair. During repair, 37LRP expression was higher in the experimental shell repair group than that in the control group, exhibiting an initial increase followed by a decrease in expression, and returning to basal levels on completion of the repair. A similar trend was also observed with respect to immunity and cellular metabolism. Expression of the 37LRP protein in the experimental group was significantly higher than that in the control group at the first and second days after shell injury. After 4 days, 37LRP expression in the experimental group was lower than that in the control group. In situ hybridization revealed a strong positive signal corresponding to the 37LRP mRNA at the horny grooves of the mantle, evagination, and in epithelial cells of the velum, which implicated these areas in the repair and formation of the cuticle, prismatic layer, and nacre.

About the Authors