Research Article

Oct4 and Sox2 overexpression improves the proliferation and differentiation of bone mesenchymal stem cells in Xiaomeishan porcine

Published: December 02, 2013
Genet. Mol. Res. 12 (4) : 6067-6079 DOI: https://doi.org/10.4238/2013.December.2.5
Cite this Article:
Y.X. Fan, C.H. Gu, Y.L. Zhang, B.S. Zhong, L.Z. Wang, Z.R. Zhou, Z.Y. Wang, R.X. Jia, F. Wang (2013). Oct4 and Sox2 overexpression improves the proliferation and differentiation of bone mesenchymal stem cells in Xiaomeishan porcine. Genet. Mol. Res. 12(4): 6067-6079. https://doi.org/10.4238/2013.December.2.5
3,459 views

Abstract

Mesenchymal stem cells derived from bone marrow (BMSCs) are a population of self-renewing multipotent cells that are capable of differentiating into various cellular lineages, and are widely employed in tissue engineering and cell therapy. Recently, clinical research involving BMSCs has become increasingly popular. In order to conduct appropriate research, it is first necessary to amplify large amounts of functional BMSCs in vitro. However, after several passages of expanding in vitro, the proliferation and differentiation potential of BMSCs gradually decline. To determine whether overexpression of Oct4 or Sox2 might prevent this decline, we transfected Oct4 or Sox2, which are essential for the pluripotency and self-renewal of embryonic stem cells, into BMSCs of Xiaomeishan porcine by a lentivirus. The results showed that overexpression of Sox2 or Oct4 BMSCs in culture media containing a basic fibroblast growth factor resulted in higher proliferation and differentiation compared to controls, suggesting that genetic modification of stemness-related genes is an efficient way to maintain the proliferation and differentiation potential of BMSCs.

Mesenchymal stem cells derived from bone marrow (BMSCs) are a population of self-renewing multipotent cells that are capable of differentiating into various cellular lineages, and are widely employed in tissue engineering and cell therapy. Recently, clinical research involving BMSCs has become increasingly popular. In order to conduct appropriate research, it is first necessary to amplify large amounts of functional BMSCs in vitro. However, after several passages of expanding in vitro, the proliferation and differentiation potential of BMSCs gradually decline. To determine whether overexpression of Oct4 or Sox2 might prevent this decline, we transfected Oct4 or Sox2, which are essential for the pluripotency and self-renewal of embryonic stem cells, into BMSCs of Xiaomeishan porcine by a lentivirus. The results showed that overexpression of Sox2 or Oct4 BMSCs in culture media containing a basic fibroblast growth factor resulted in higher proliferation and differentiation compared to controls, suggesting that genetic modification of stemness-related genes is an efficient way to maintain the proliferation and differentiation potential of BMSCs.