Research Article

Production and identification of doubled haploids in tropical maize

Published: October 07, 2013
Genet. Mol. Res. 12 (4) : 4230-4242 DOI: https://doi.org/10.4238/2013.October.7.9
Cite this Article:
(2013). Production and identification of doubled haploids in tropical maize. Genet. Mol. Res. 12(4): gmr3015. https://doi.org/10.4238/2013.October.7.9
1,400 views

Abstract

The production of maize doubled haploid (DH) lines is a technique commonly used by private companies, but not by Brazilian public institutions. Research on this technique is essential to develop and improve the production of DH lines grown under tropical conditions. We assessed the ability of a gynogenetic haploid inducer system to induce haploids in a tropical environment, assessed the induction rate of haploids identified using the R-navajo morphological marker, checked for interference from the generation of hybrid donors on haploid induction, measured the ability of flow cytometry, and simple sequence repeat marker techniques to identify doubled haploids. Seeds from the inducer Krasnodar Embryo Marker Synthetic (KEMS) line were sown in Ponta Grossa, PR, and Cravinhos, SP, and the plants were crossed to produce six hybrids and their F2 generations. The seeds were separated according to the R-navajo morphological marker indicator of haploidy (purple endosperm and white embryo) and germinated in a controlled environment. Chromosomal duplication was performed in seedlings selected as putative haploids. We performed subsequent confirmation of ploidy and the success of duplication using flow cytometry and SSR marker techniques. We concluded that DH lines can be obtained from hybrids crossed with the inducer KEMS line. The generation of inbred hybrids did not affect the induction rate or chromosomal duplication in haploids. The use of flow cytometry and SSR markers was effective in verifying chromosomal duplication in haploids.

The production of maize doubled haploid (DH) lines is a technique commonly used by private companies, but not by Brazilian public institutions. Research on this technique is essential to develop and improve the production of DH lines grown under tropical conditions. We assessed the ability of a gynogenetic haploid inducer system to induce haploids in a tropical environment, assessed the induction rate of haploids identified using the R-navajo morphological marker, checked for interference from the generation of hybrid donors on haploid induction, measured the ability of flow cytometry, and simple sequence repeat marker techniques to identify doubled haploids. Seeds from the inducer Krasnodar Embryo Marker Synthetic (KEMS) line were sown in Ponta Grossa, PR, and Cravinhos, SP, and the plants were crossed to produce six hybrids and their F2 generations. The seeds were separated according to the R-navajo morphological marker indicator of haploidy (purple endosperm and white embryo) and germinated in a controlled environment. Chromosomal duplication was performed in seedlings selected as putative haploids. We performed subsequent confirmation of ploidy and the success of duplication using flow cytometry and SSR marker techniques. We concluded that DH lines can be obtained from hybrids crossed with the inducer KEMS line. The generation of inbred hybrids did not affect the induction rate or chromosomal duplication in haploids. The use of flow cytometry and SSR markers was effective in verifying chromosomal duplication in haploids.