Research Article

Characterization and comparison of EST-SSR and TRAP markers for genetic analysis of the Japanese persimmon Diospyros kaki

Published: January 09, 2013
Genet. Mol. Res. 12 (3) : 2841-2851 DOI: https://doi.org/10.4238/2013.January.9.3
Cite this Article:
C. Luo, F. Zhang, Q.L. Zhang, D.Y. Guo, Z.R. Luo (2013). Characterization and comparison of EST-SSR and TRAP markers for genetic analysis of the Japanese persimmon Diospyros kaki. Genet. Mol. Res. 12(3): 2841-2851. https://doi.org/10.4238/2013.January.9.3
2,209 views

Abstract

We developed and characterized expressed sequence tags (ESTs)-simple sequence repeats (SSRs) and targeted region amplified polymorphism (TRAP) markers to examine genetic relationships in the persimmon genus Diospyros gene pool. In total, we characterized 14 EST-SSR primer pairs and 36 TRAP primer combinations, which were amplified across 20 germplasms of 4 species in the genus Diospyros. We used various genetic parameters, including effective multiplex ratio (EMR), diversity index (DI), and marker index (MI), to test the utility of these markers. TRAP markers gave higher EMR (24.85) but lower DI (0.33), compared to EST-SSRs (EMR = 3.65, DI = 0.34). TRAP gave a very high MI (8.08), which was about 8 times than the MI of EST-SSR (1.25). These markers were utilized for phylogenetic inference of 20 genotypes of Diospyros kaki Thunb. and allied species, with a result that all kaki genotypes clustered closely and 3 allied species formed an independent group. These markers could be further exploited for large-scale genetic relationship inference.

We developed and characterized expressed sequence tags (ESTs)-simple sequence repeats (SSRs) and targeted region amplified polymorphism (TRAP) markers to examine genetic relationships in the persimmon genus Diospyros gene pool. In total, we characterized 14 EST-SSR primer pairs and 36 TRAP primer combinations, which were amplified across 20 germplasms of 4 species in the genus Diospyros. We used various genetic parameters, including effective multiplex ratio (EMR), diversity index (DI), and marker index (MI), to test the utility of these markers. TRAP markers gave higher EMR (24.85) but lower DI (0.33), compared to EST-SSRs (EMR = 3.65, DI = 0.34). TRAP gave a very high MI (8.08), which was about 8 times than the MI of EST-SSR (1.25). These markers were utilized for phylogenetic inference of 20 genotypes of Diospyros kaki Thunb. and allied species, with a result that all kaki genotypes clustered closely and 3 allied species formed an independent group. These markers could be further exploited for large-scale genetic relationship inference.