Research Article

Combined genetic and imaging diagnosis for two large Chinese families affected with Pelizaeus-Merzbacher disease

Published: August 06, 2012
Genet. Mol. Res. 11 (3) : 2035-2044 DOI: 10.4238/2012.August.6.7

Abstract

Pelizaeus-Merzbacher disease (PMD) is a rare X-linked recessive disorder characterized by nystagmus, impaired motor development, ataxia, and progressive spasticity. Genetically defective or altered levels of proteolipid protein (PLP1) or gap-junction alpha protein 12 gene have been found to be a common cause. Here we report on two large Han Chinese families affected with this disease. The probands of both families had produced sons featuring cerebral palsy that had never been correctly diagnosed. PMD was suspected after careful analysis of family history and clinical features. Three rounds of molecular testing, including RT-PCR, genetics linkage and SRY sequence analyses, in combination with fetal ultrasound and magnetic resonance imaging, confirmed the diagnosis. In Family 1, in addition to two patients, three carriers were identified, including one who was not yet married. Genetic testing indicated that a fetus did not have the disease. A healthy girl was born later. In Family 2, two patients and two carriers were identified, while a fetus was genetically normal. A healthy girl was born later. We concluded that by combining genetic testing and imaging, awareness of the symptoms of PMD and understanding of its molecular biology, there is great benefit for families that are at risk for producing offspring affected with this severe disease.

Pelizaeus-Merzbacher disease (PMD) is a rare X-linked recessive disorder characterized by nystagmus, impaired motor development, ataxia, and progressive spasticity. Genetically defective or altered levels of proteolipid protein (PLP1) or gap-junction alpha protein 12 gene have been found to be a common cause. Here we report on two large Han Chinese families affected with this disease. The probands of both families had produced sons featuring cerebral palsy that had never been correctly diagnosed. PMD was suspected after careful analysis of family history and clinical features. Three rounds of molecular testing, including RT-PCR, genetics linkage and SRY sequence analyses, in combination with fetal ultrasound and magnetic resonance imaging, confirmed the diagnosis. In Family 1, in addition to two patients, three carriers were identified, including one who was not yet married. Genetic testing indicated that a fetus did not have the disease. A healthy girl was born later. In Family 2, two patients and two carriers were identified, while a fetus was genetically normal. A healthy girl was born later. We concluded that by combining genetic testing and imaging, awareness of the symptoms of PMD and understanding of its molecular biology, there is great benefit for families that are at risk for producing offspring affected with this severe disease.