Research Article

Single- and double-SSR primer combined analyses in rice

Published: April 27, 2012
Genet. Mol. Res. 11 (2) : 1032-1038 DOI: 10.4238/2012.April.27.1

Abstract

Polymerase chain reaction (PCR) is the foundation of SSR molecular marker technology. We used sib rice varieties J518, XD1 and SD23 as experimental materials, selecting 30 pairs of SSR primers, including RM127, RM337 and RM5172, covering the rice genome, and performed single- and double-SSR primer combined analyses. We found that under the same PCR system and conditions, a single primer of the SSR primer pairs could amplify the same fragments as double primers do. The sequencing results demonstrated that some amplified fragments that we previously believed to come from double primers were actually produced by a single primer. The use of this kind of primer, such as the RM127 primer pair, for marker-assisted breeding will therefore be misleading. Additionally, using the same PCR system and conditions, some single primers that are part of SSR primer pairs can amplify many more specific fragments than double-SSR primers. For instance, in the case of the RM5172 primer pair, a single primer P1 amplified approximately three times the number of fragments as the double primer. This information can contribute to research on genetic diversity of species, understanding of genetic relationships and identification of germplasm resources. Accordingly, combined analyses of single- and double-primer amplification products not only can remove single-primer amplification fragments and false-positives from double-primer amplification products in order to improve test accuracy, but also can facilitate research on genetic diversity, exploration of phylogenetic relationships and identification of germplasm resources. We define this method as “single- and double-SSR primer combined analyses”.

Polymerase chain reaction (PCR) is the foundation of SSR molecular marker technology. We used sib rice varieties J518, XD1 and SD23 as experimental materials, selecting 30 pairs of SSR primers, including RM127, RM337 and RM5172, covering the rice genome, and performed single- and double-SSR primer combined analyses. We found that under the same PCR system and conditions, a single primer of the SSR primer pairs could amplify the same fragments as double primers do. The sequencing results demonstrated that some amplified fragments that we previously believed to come from double primers were actually produced by a single primer. The use of this kind of primer, such as the RM127 primer pair, for marker-assisted breeding will therefore be misleading. Additionally, using the same PCR system and conditions, some single primers that are part of SSR primer pairs can amplify many more specific fragments than double-SSR primers. For instance, in the case of the RM5172 primer pair, a single primer P1 amplified approximately three times the number of fragments as the double primer. This information can contribute to research on genetic diversity of species, understanding of genetic relationships and identification of germplasm resources. Accordingly, combined analyses of single- and double-primer amplification products not only can remove single-primer amplification fragments and false-positives from double-primer amplification products in order to improve test accuracy, but also can facilitate research on genetic diversity, exploration of phylogenetic relationships and identification of germplasm resources. We define this method as “single- and double-SSR primer combined analyses”.

About the Authors