Methodology

Multiple displacement amplification for preimplantation genetic diagnosis of fragile X syndrome

Published: November 17, 2011
Genet. Mol. Res. 10 (4) : 2851-2859 DOI: https://doi.org/10.4238/2011.November.17.3
Cite this Article:
H.S. Lee, M.J. Kim, C.K. Lim, J.W. Cho, I.O. Song, I.S. Kang (2011). Multiple displacement amplification for preimplantation genetic diagnosis of fragile X syndrome. Genet. Mol. Res. 10(4): 2851-2859. https://doi.org/10.4238/2011.November.17.3
4,984 views

Abstract

Preimplantation genetic diagnosis (PGD) has become an assisted reproductive technique for couples that have genetic risks. Despite the many advantages provided by PGD, there are several problems, including amplification failure, allele drop-out and amplification inefficiency. We evaluated multiple displacement amplification (MDA) for PGD of the fragile X syndrome. Whole genome amplification was performed using MDA. MDA products were subjected to fluorescent PCR of fragile X mental retardation-1 (FMR1) CGG repeats, amelogenin and two polymorphic markers. In the pre-clinical tests, the amplification rates of the FMR1 CGG repeat, DXS1215 and FRAXAC1 were 84.2, 87.5 and 75.0%, respectively, while the allele dropout rates were 31.3, 57.1 and 50.0%, respectively. In two PGD treatment cycles, 20 embryos among 30 embryos were successfully diagnosed as 10 normal embryos, four mutated embryos and six heterozygous carriers. Three healthy embryos were transferred to the uterus; however, no clinical pregnancy was achieved. Our data indicate that MDA and fluorescent PCR with four loci can be successfully applied to PGD for fragile X syndrome. Advanced methods for amplification of minuscule amounts of DNA could improve the sensitivity and reliability of PGD for complicated single gene disorders.

Preimplantation genetic diagnosis (PGD) has become an assisted reproductive technique for couples that have genetic risks. Despite the many advantages provided by PGD, there are several problems, including amplification failure, allele drop-out and amplification inefficiency. We evaluated multiple displacement amplification (MDA) for PGD of the fragile X syndrome. Whole genome amplification was performed using MDA. MDA products were subjected to fluorescent PCR of fragile X mental retardation-1 (FMR1) CGG repeats, amelogenin and two polymorphic markers. In the pre-clinical tests, the amplification rates of the FMR1 CGG repeat, DXS1215 and FRAXAC1 were 84.2, 87.5 and 75.0%, respectively, while the allele dropout rates were 31.3, 57.1 and 50.0%, respectively. In two PGD treatment cycles, 20 embryos among 30 embryos were successfully diagnosed as 10 normal embryos, four mutated embryos and six heterozygous carriers. Three healthy embryos were transferred to the uterus; however, no clinical pregnancy was achieved. Our data indicate that MDA and fluorescent PCR with four loci can be successfully applied to PGD for fragile X syndrome. Advanced methods for amplification of minuscule amounts of DNA could improve the sensitivity and reliability of PGD for complicated single gene disorders.