Research Article

Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber

Published: October 25, 2011
Genet. Mol. Res. 10 (4) : 2613-2636 DOI: https://doi.org/10.4238/2011.October.25.9
Cite this Article:
S.Q. Liu, X.H. Liu, L.W. Jiang (2011). Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber. Genet. Mol. Res. 10(4): 2613-2636. https://doi.org/10.4238/2011.October.25.9
3,259 views

Abstract

Plant lipoxygenase (LOX) is involved in growth and developmental control processes, through the biosynthesis of regulatory molecules and defense responses to pathogens, wounding and stress. To date, few LOX proteins and little tissue expression profiling have been reported in detail for cucumber (Cucumis sativus L.). Recent completion of the cucumber genome sequence now permits genome-wide analysis of the LOX gene family in cucumber as well as comparison with LOX in Arabidopsis and rice. We identified 23 candidate LOX genes in the cucumber genome; phylogenetic analysis indicated that these LOX members cluster into two groups, designated types 1 and 2, as expected from previous studies. Sequence analysis showed that five binding sites of iron, including two consensus histidines in the LOX domain, are highly conserved in the cucumber LOX proteins. Analysis of chromosomal localization and genome distribution suggested that tandem duplication and/or polyploidal duplication contributed to the expansion of the cucumber LOX gene family. Based on intron/exon structure analysis, only a few of the extant intron patterns existed in the ancestor of monocots and eudicots. Expression data showed widespread distribution of the cucumber LOX gene family within plant tissues, suggesting that they perform different functions in different tissues.

Plant lipoxygenase (LOX) is involved in growth and developmental control processes, through the biosynthesis of regulatory molecules and defense responses to pathogens, wounding and stress. To date, few LOX proteins and little tissue expression profiling have been reported in detail for cucumber (Cucumis sativus L.). Recent completion of the cucumber genome sequence now permits genome-wide analysis of the LOX gene family in cucumber as well as comparison with LOX in Arabidopsis and rice. We identified 23 candidate LOX genes in the cucumber genome; phylogenetic analysis indicated that these LOX members cluster into two groups, designated types 1 and 2, as expected from previous studies. Sequence analysis showed that five binding sites of iron, including two consensus histidines in the LOX domain, are highly conserved in the cucumber LOX proteins. Analysis of chromosomal localization and genome distribution suggested that tandem duplication and/or polyploidal duplication contributed to the expansion of the cucumber LOX gene family. Based on intron/exon structure analysis, only a few of the extant intron patterns existed in the ancestor of monocots and eudicots. Expression data showed widespread distribution of the cucumber LOX gene family within plant tissues, suggesting that they perform different functions in different tissues.

About the Authors