Research Article

Prevalence of cystathionine beta synthase gene mutation 852Ins68 as a possible risk for neural tube defects in eastern India

Published: October 07, 2011
Genet. Mol. Res. 10 (4) : 2424-2429 DOI: https://doi.org/10.4238/2011.October.7.4
Cite this Article:
A.K. Saxena, J. Gupta, S. Pandey, A.N. Gangopadhaya, L.K. Pandey (2011). Prevalence of cystathionine beta synthase gene mutation 852Ins68 as a possible risk for neural tube defects in eastern India. Genet. Mol. Res. 10(4): 2424-2429. https://doi.org/10.4238/2011.October.7.4
2,008 views

Abstract

Cystathionine beta synthase gene (CβS) catalyzes the condensation of homocysteine with serine, forming cystathionine by the transsulfuration pathway. Disruption of CβS enzyme activity due to defective folic acid metabolism increases the risk factor for neural tube defects. We evaluated the CβS gene mutation in 25 children with neural tube defects (NTDs), including lumbosacral and thoracic myelomeningocele and open NTDs and mothers of cases, along with 25 healthy children and their mothers, serving as controls. Genomic DNA was isolated to assess the polymorphism of 852Ins68 in the CβS gene using PCR-RFLP analysis and nucleotide sequencing techniques. The 68-bp insertion was observed in one of the 25 NTD cases (lumbosacral myelomeningocele), and in two of the mothers of NTD cases. Statistical analysis was carried out using the Fischer exact probability test, which showed a lack of significance (P > 0.05), but the odds ratio of 2.08 with 95% confidence interval of 0.17-24.6 in NTDs mother was quite high because of the small sample size. However, the study was further extended to find out the involvement of specific nucleotide sequences, which again confirmed the 852Ins68 insertion and replacement of nucleotides (TCCAT to GGGG) in lumbosacral myelomeningocele (due to other category of NTDs), suggesting that it could be an independent risk factor for birth defects, including NTDs.

Cystathionine beta synthase gene (CβS) catalyzes the condensation of homocysteine with serine, forming cystathionine by the transsulfuration pathway. Disruption of CβS enzyme activity due to defective folic acid metabolism increases the risk factor for neural tube defects. We evaluated the CβS gene mutation in 25 children with neural tube defects (NTDs), including lumbosacral and thoracic myelomeningocele and open NTDs and mothers of cases, along with 25 healthy children and their mothers, serving as controls. Genomic DNA was isolated to assess the polymorphism of 852Ins68 in the CβS gene using PCR-RFLP analysis and nucleotide sequencing techniques. The 68-bp insertion was observed in one of the 25 NTD cases (lumbosacral myelomeningocele), and in two of the mothers of NTD cases. Statistical analysis was carried out using the Fischer exact probability test, which showed a lack of significance (P > 0.05), but the odds ratio of 2.08 with 95% confidence interval of 0.17-24.6 in NTDs mother was quite high because of the small sample size. However, the study was further extended to find out the involvement of specific nucleotide sequences, which again confirmed the 852Ins68 insertion and replacement of nucleotides (TCCAT to GGGG) in lumbosacral myelomeningocele (due to other category of NTDs), suggesting that it could be an independent risk factor for birth defects, including NTDs.