Research Article

Genetic diversity of Annona crassiflora (Annonaceae) in northern Minas Gerais State

Published: September 23, 2011
Genet. Mol. Res. 10 (3) : 2172-2180 DOI: 10.4238/vol10-3gmr1188

Abstract

Genetic diversity analyses of tropical tree species are relevant to landscape management, plant genetic resource inventory, and biological conservation of threatened species. Annona crassiflora is an endangered fruit tree native to the Cerrado biome that is threatened by reduction of natural populations and fruit extraction. We examined the intra- and interpopulational genetic diversity of this species in the northern region of Minas Gerais State. Seventy-two individuals from four natural populations were genotyped using RAPD markers. We found moderate genetic diversity among populations, with Shannon’s I index varying between 0.31 and 0.44, and Nei’s genetic diversity (HE) for the population set equal to 0.31. AMOVA indicated a greater genetic variation within (77.38%) rather than among populations (22.62%), tending towards isolation by distance (Mantel’s r = 0.914; P = 0.089). Nei’s genetic identity estimates among populations revealed a hierarchical pattern of genetic similarity of form [(CA1, CA2), MC], [(GM)], corroborating the high genetic differentiation between spatially isolated populations.

Genetic diversity analyses of tropical tree species are relevant to landscape management, plant genetic resource inventory, and biological conservation of threatened species. Annona crassiflora is an endangered fruit tree native to the Cerrado biome that is threatened by reduction of natural populations and fruit extraction. We examined the intra- and interpopulational genetic diversity of this species in the northern region of Minas Gerais State. Seventy-two individuals from four natural populations were genotyped using RAPD markers. We found moderate genetic diversity among populations, with Shannon’s I index varying between 0.31 and 0.44, and Nei’s genetic diversity (HE) for the population set equal to 0.31. AMOVA indicated a greater genetic variation within (77.38%) rather than among populations (22.62%), tending towards isolation by distance (Mantel’s r = 0.914; P = 0.089). Nei’s genetic identity estimates among populations revealed a hierarchical pattern of genetic similarity of form [(CA1, CA2), MC], [(GM)], corroborating the high genetic differentiation between spatially isolated populations.